Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 258(6): 111, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919614

RESUMO

MAIN CONCLUSION: Role of salinity responsive metabolites of rice and its wild species has been discussed. Salinity stress is one of the important environmental stresses that severely affects rice productivity. Although, several vital physio-biochemical and molecular responses have been activated in rice under salinity stress which were well described in literatures, the mechanistic role of salt stress and microbes-induced metabolites to overcome salt stress in rice are less studied. Nevertheless, over the years, metabolomic studies have allowed a comprehensive analyses of rice salt stress responses. Hence, we review the salt stress-triggered alterations of various metabolites in rice and discuss their significant roles toward salinity tolerance. Some of the metabolites such as serotonin, salicylic acid, ferulic acid and gentisic acid may act as signaling molecules to activate different downstream salt-tolerance mechanisms; whereas, the other compounds such as amino acids, sugars and organic acids directly act as protective agents to maintain osmotic balance and scavenger of reactive oxygen species during the salinity stress. The quantity, type, tissues specificity and time of accumulation of metabolites induced by salinity stress vary between salt-sensitive and tolerant rice genotypes and thus, contribute to their different degrees of salt tolerance. Moreover, few tolerance metabolites such as allantoin, serotonin and melatonin induce unique pathways for activation of defence mechanisms in salt-tolerant varieties of rice, suggesting their potential roles as the universal biomarkers for salt tolerance. Therefore, these metabolites can be applied exogenously to the sensitive genotypes of rice to enhance their performance under salt stress. Furthermore, the microbes of rhizosphere also participated in rice salt tolerance either directly or indirectly by regulating their metabolic pathways. Thus, this review for the first time offers valuable and comprehensive insights into salt-induced spatio-temporal and genotype-specific metabolites in different genotypes of rice which provide a reference point to analyze stress-gene-metabolite relationships for the biomarker designing in rice. Further, it can also help to decipher several metabolic systems associated with salt tolerance in rice which will be useful in developing salt-tolerance cultivars by conventional breeding/genetic engineering/exogenous application of metabolites.


Assuntos
Oryza , Oryza/fisiologia , Serotonina/metabolismo , Melhoramento Vegetal , Estresse Salino , Metabolômica , Biomarcadores , Salinidade , Estresse Fisiológico
2.
Plant Mol Biol ; 112(3): 143-160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37184674

RESUMO

Soil salinity stress is one of the major bottlenecks for crop production. Although, allantoin is known to be involved in nitrogen metabolism in plants, yet several reports in recent time indicate its involvement in various abiotic stress responses including salinity stress. However, the detail mechanism of allantoin involvement in salinity stress tolerance in plants is not studied well. Moreover, we demonstrated the role of exogenous application of allantoin as well as increased concentration of endogenous allantoin in rendering salinity tolerance in rice and Arabidopsis respectively, via., induction of abscisic acid (ABA) and brassinosteroid (BR) biosynthesis pathways. Exogenous application of allantoin (10 µM) provides  salt-tolerance to salt-sensitive rice genotype (IR-29). Transcriptomic data after exogenous supplementation of allantoin under salinity stress showed induction of ABA (OsNCED1) and BR (Oscytochrome P450) biosynthesis genes in IR-29. Further, the key gene of allantoin biosynthesis pathway i.e., urate oxidase of the halophytic species Oryza coarctata was also found to induce ABA and BR biosynthesis genes when over-expressed in transgenic Arabidopsis. Thus, indicating that ABA and BR biosynthesis pathways were involved in allantoin mediated salinity tolerance in both rice and Arabidopsis. Additionally, it has been found that several physio-chemical parameters such as biomass, Na+/K+ ratio, MDA, soluble sugar, proline, allantoin and chlorophyll contents were also associated with the allantoin-mediated salinity tolerance in urate oxidase overexpressed lines of Arabidopsis. These findings depicted the functional conservation of allantoin for salinity tolerance in both plant clades.


Assuntos
Arabidopsis , Oryza , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Oryza/genética , Oryza/metabolismo , Tolerância ao Sal/genética , Alantoína/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Urato Oxidase/genética , Urato Oxidase/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Salinidade , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
3.
3 Biotech ; 11(12): 497, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34881160

RESUMO

The present study reports the use of silver nanoparticles as a gene carrier, substituting gold microcarrier for biolistic gene delivery in Nicotiana tabacum L. Efficiency of biolistic transformation using silver nanoparticles (100 nm) was compared with that of gold microcarriers (0.6 micron) under varying helium pressure (450 psi, 650 psi, 900 psi and 1100 psi) and target distance (6 cm and 9 cm). Among the different concentrations (0.01-100 mgL-1) of silver nanoparticles tried, 10 mgL-1 produced the highest number of transient GUS expression (30) with statistical significance. Helium pressure of 650 and target distance of 9 cm, and 900 psi pressure and 6 cm distance resulted in the highest GUS expression with gold microcarriers and silver nanoparticles, respectively. Transformation efficiency was significantly higher with silver nanoparticles than gold microparticles as carriers resulting in a reduction up to 37.5-fold on the cost of consumables. Regeneration efficiencies of tissues bombarded with gold microcarriers and silver nanoparticles were 62.5% and 70.83%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...